Artificial Immune Systems Applied to Multiprocessor Scheduling
نویسندگان
چکیده
We propose an efficient method of extracting knowledge when scheduling parallel programs onto processors using an artificial immune system (AIS). We consider programs defined by Directed Acyclic Graphs (DAGs). Our approach reorders the nodes of the program according to the optimal execution order on one processor. The system works in either learning or production mode. In the learning mode we use an immune system to optimize the allocation of the tasks to individual processors. Best allocations are stored in the knowledge base. In the production mode the optimization module is not invoked, only the stored allocations are used. This approach gives similar results to the optimization by a genetic algorithm (GA) but requires only a fraction of function evaluations.
منابع مشابه
Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems
Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...
متن کاملPre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems
Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...
متن کاملArtificial Immune System for Single Machine Scheduling and Batching Problem in Supply Chain
This paper addresses a production and outbound distribution scheduling problem in which a set of jobs have to be process on a single machine for delivery to customers or to other machines for further processing. We assume that there is a sufficient number of vehicles and the delivery costs is independent of batch size but it is dependent on each trip. In this paper, we present an Artificial Imm...
متن کاملA Multiprocessor System with Non-Preemptive Earliest-Deadline-First Scheduling Policy: A Performability Study
This paper introduces an analytical method for approximating the performability of a firm realtime system modeled by a multi-server queue. The service discipline in the queue is earliestdeadline- first (EDF), which is an optimal scheduling algorithm. Real-time jobs with exponentially distributed relative deadlines arrive according to a Poisson process. All jobs have deadlines until the end of s...
متن کاملOn Performance Analysis of Hybrid Intelligent Algorithms (Improved PSO with SA and Improved PSO with AIS) with GA, PSO for Multiprocessor Job Scheduling
Many heuristic-based approaches have been applied to finding schedules that minimize the execution time of computing tasks on parallel processors. Particle Swarm Optimization is currently employed in several optimization and search problems due its ease and ability to find solutions successfully. A variant of PSO, called as Improved PSO has been developed in this paper and is hybridized with th...
متن کامل